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Summary

A discrete-vortex method has been developed to model the vortex flow over a delta wing and to

investigate the wing rock problem associated with highly swept wings. The method uses two logarithmic

vortices placed above the wing to represent the vortex flow field, but instead of the boundary conditions

used in previous discrete-vortex models, it uses conditions based on conical flow, vortex rate of change of

momentum, and other considerations to position the vortices and determine their strengths. For symmet-

ric zero roll, the assumptions are that the velocity at the center of each vortex is directed radially outward

from the wing axis (a conical flow requirement), that the force on the vortex system is equal to the rate of

change of momentum of the vortex system, and that the maximum force on the vortex is equal to that

possible with attached flow. For asymmetric nonzero roll, the strengths and positions of the vortices were

determined by using additional assumptions about positions of the vortices relative to streamlines and

lines of constant velocity potential. A strictly kinematic relationship based on the time analogy and

conical-flow assumptions is derived in an appendix to this report and was used to determine the hysteretic

positions of the vortices during rolling oscillations. The rolling moments calculated for the wing and

vortex system were used in the single-degree-of-freedom equation of motion for the wing about its roll

axis to generate wing rock time histories. The calculated results in this report are compared with avail-

able experimental data and analyzed to show the effects of angle of attack, wing geometry, and wing

inertia on wing rock characteristics.

The results show that the method was able to model the basic features of wing rock once the static

rolling moment characteristics were adjusted to agree with the experimental data. Static and dynamic

vortex positions and wing rock amplitudes and frequencies were generally in good agreement with the

available experimental data. The results verify that wing rock is caused by hysteretic deflections of the

vortices and indicate that the stabilizing rolling moments that limit the amplitude of wing rock oscillations

are essentially the result of one primary vortex moving outboard of the wing to where it has less influence

on the wing.

Introduction

One of the more serious problems affecting fighter aircraft at high angles of attack is the condition

known as wing roc_a high amplitude, high frequency rolling oscillation associated with the leading-

edge vortex flow on highly swept wings. Wing rock can cause serious maneuvering and tracking prob-

lems and, because it involves a substantial loss of lift, also can present a potential safety hazard during

takeoff and landing for both fighter and highly swept transport designs.

Although wing rock has been studied in a number of investigations (see, for example, refs. 1 16), it is

still not completely understood. The experimental investigations (refs. 1 9) have indicated that wing rock

is probably caused by the time lags in vortex position that occur when a wing with leading-edge vortex

flow is given a roll velocity. As the wing rolls, the primary vortex on one side of the wing will move

closer to the wing upper surface, while that on the other side moves away from the wing upper surface,

producing an unstable rolling moment that drives the motion to higher amplitudes. The experiments,

however, have not been able to show what causes the restoring moments that come into play at the higher

roll angles and limit the amplitudes of wing rock oscillations. Also not known is how parameters such as

wing size, sweep, and moment of inertia affect wing rock amplitudes and frequencies.

Computational studies of wing rock have not added much information beyond what has been learned

experimentally. Navier-Stokes calculations for the wing rock problem are extremely difficult since they

involve unsteady motions of both the wing and flow field. Although Navier-Stokes calculations of wing



rockweremadein reference10,theywerefortheforcedoscillationof adeltawingatanangleof attack
of 20°, anangleforwhichwingrockwouldnotbeexpectedto occur(see,forexample,refs.4,7,and9).
Two-dimensionalEulercalculationsfor adeltawingundergoingwingrockat supersonicspeedswere
madein reference11,andfully three-dimensionalEulercalculationsweremadein reference12. These
Eulercalculationswereableto simulatelimit-cyclewingrockoscillationsandshowthattheywerethe
resultof momentvariationsthatwereunstableatthelowerwingroll anglesandstableatthehigherroll
angles;however,neitherwasableto identifytheunderlyingaerodynamicmechanismsthatcausethistype
ofrollingmomentvariation.Moreover,neithertheEulernortheNavier-Stokescalculationsmadetodate
haveproducedresultsthatcanbedirectlycomparedwithavailableexperimentaldata.

Thediscrete-vortexmodelsdevelopedin references13and14representamuchsimplermethodfor
studyingwingrock. Thesemodelsassumethatthevortexflowfieldis dominatedbytwoprimaryvor-
ticesthatformabovethewingandwhichcanberepresentedmathematicallybysimplelogarithmicfunc-
tions. Theyneglectthesecondaryandtertiaryvorticesthatformnearthewingleadingedgesin areal
flowandassumethatvorticityis fedintotheprimaryvorticesalongstraight-linefeedingsheetsconnect-
ingthewingleadingedgesto thevortexcenters,ratherthanthecurvedfeedingsheetsassumedin the
morecomplexdiscrete-vortexmodels.Besidesgreatlysimplifyingtheproblem,thistypeof modelpro-
videsbetterinsightinto theaerodynamicmechanismsinvolvedin wingrockthanthemorecomplex
methods.Thesemodelsreducetheproblemto anessentiallythree-bodyvibrationsproblem:oncethe
positionsandstrengthsofthevorticeshavebeendetermined,themomentstheyproduceonthewingcan
bedeterminedandeasilyanalyzedtoprovideaclearerpictureoftheaerodynamicmechanismsinvolved.

Theproblemwithdiscrete-vortexmethods,atleastin thesimplifiedforminwhichtheyaredeveloped
in references13and14,is thattheyareinherentlyinaccurate.TheyarebasedontheBrownandMichael
modeldescribedin reference16,whichdoesnotgiveaccuratevortexpositionswhenappliedto two-
dimensionalcylindersandcones(ref.17)ordeltawings(ref. 16),evenforthebasiccasein whichthe
vorticesaresymmetricallyaligned.Themodelsdevelopedfor wingrock,therefore,canatbestbe
expectedto providequalitativebutnotquantitativeresults.Theinaccuraciesin thesediscrete-vortex
methodsareusuallythoughtto resultfromthesimplifyingassumptionsmadein theirdevelopment;
however,theproblemisnotthatthesemodelsoversimplifiedtheflowfield,rathertheproblemisthatthe
properboundaryconditionswerenotappliedinobtainingasolution.Inreference18,it wasshownthata
moreaccuratediscrete-vortexmethodcouldbedevelopedforconesbyusingboundaryconditionsbased
onconicalvortexflowandthemomentumof thevortexsystem,ratherthantheconditionsusedin the
basicBrownandMichaelmodel.

Thepurposeof thepresentpaperis to showthatbyusingadifferentsetof boundaryconditionsthan
thoseusedinpreviousdiscrete-vortexmodels,alongwithotherconstraintsonvortexmotion,it ispossi-
bletodevelopamoreaccuratemethodfor studyingwingrock. Thisnewmethodnotonlycanprovidea
morethoroughunderstandingofthewingrockproblem,butalsocangivereasonablyaccuratepredictions
ofwingrockamplitudesandfrequencies.

Themethoddevelopedin thispaperdiscardsthetwobasicboundaryconditionsusedin theBrownand
Michaelmodel(ref. 16)andthewingrockmodelsof references13and14. Oneis aKuttacondition,
whichrequirestheflowtoleavesmoothlyfromthewingleadingedges;thisconditionisconsideredinap-
plicablebecausethepresentmethodneglectssecondaryandtertiaryvortexflow. Thesecondis azero-
forceconditioninwhichtheforceonanassumedfeedingsheetissetequaltotheforcecausedbyinduced
effectsatthevortexcenter.It replacesthesetwoconditionswithaseriesof othersdesignedto determine
thevortexpositionsandstrengthsduringdifferentstagesofthewingrockprocess.



In thepresentmethod,theproblemissolvedfirst forsymmetriczeroroll; thisis doneby applyinga
conicalflowcondition,whichsetsthestrengthsofthevortices,andthenapplyingamomentumcondition,
whichequatestheforceonthevortexsystemto itsrateof changeofmomentum.A maximumforcecon-
ditionthatequatestheforceonthevortexsystemto themaximumforcepossiblewithattachedflowis
thenappliedasthethirdconditionneededtosolvethezeroroll case.

Informationaboutthestreamlinesonwhichtheprimaryvorticesliein thesymmetriccaseis thenused
to determinevortexpositionsandstrengthswith thewing at a nonzeroroll angle.Thevorticesare
assumedtomovewiththesestreamlineswhenthewingisrolledandalsotoretaintheirpositionsrelative
tocertainvelocity-potentiallinesthatremainfixedwithrespecttothewing. Theseconditions,alongwith
theconicalflowandmomentumconditions,providethesixconditionsneededto solvetheproblemfor
asymmetricnonzeroroll.

Thefinalpositionsthatthevorticesassumewhenthewingundergoesarollingvelocityaredetermined
by addingincrementalhystereticdisplacementsto thecalculatedstaticpositions.An equationthatis
basedontheconicalflowandtimeanalogyassumptionsandgivesthehystereticdisplacementsin terms
ofstaticvortexposition,wingrollrate,semiapexangle,andangleofattackisderivedinthisreport.

Oncethepositionsandstrengthsof thevorticeshavebeendeterminedin thepresentmethod,then
methodsbasedonBlasiusintegrations(refs.19and20)areusedto determinethestaticanddynamic
rollingmomentsactingonthewing. Thesearethenusedin thesingle-degree-offreedomequationof
motionfor thewingaboutitsroll axisto generatewingrockoscillations.To assesstheaccuracyof the
method,thecomputedresultsarecomparedwithavailableexperimentaldataforrangesof angleof attack,
free-streamvelocity,winggeometry,andmomentsofinertia.

Symbols

A
b 2

wing aspect ratio, --
S

a local semispan of wing, ft

b wing span, fl

Attached-flow force
CFattached attached-flow force coefficient, lb

qS

nondimensional vortex strength, Fk
2_aU_ sinc_

CI rolling moment coefficient, Rolling moment
qSb

C/a_ached attached-flow lift coefficient,
Attached-flow lift

qS

C/friction rolling moment coefficient due to friction in roll-oscillation apparatus used in wind tunnel

test



C1h

Clp

C1s

C1 Ixk,Yk

C1 Ixk+Axk,Yk

C1,

cN

Co

Cx

Cy

C

calc.

dl, d2

exp.

F

FFS

Fmax

FV

Fx

rolling moment coefficient due to hysteretic effects, --

attached-flow roll damping coefficient, --

static rolling moment coefficient, ls
qSb

OC1

lh

qSb

given wing roll angle

static spring rolling moment derivative, --
OC1

4,

X-axis force coefficient, --

Y-axis force coefficient, --

wing root chord, ft

calculated

centroids for vortex pairs

experiment

qS

wing normal force coefficient,
Normal force

qS

path of integration around closed curve in )_-plane; positive direction is that for which an

observer, traveling along path, would keep enclosed area to left

Fx

qS

Fy

steady pressure force on wing, lb

force on feeding sheet assumed in Brown and Michael model of reference 16, lb

maximum force in y-direction on either wing or primary vortices (see fig. 6(d)), lb

force due to nonzero velocity at primary vortex center, lb

steady pressure force on wing in x-direction, lb

static rolling moment coefficient calculated with vortex at static position xk,Yk at given

wing roll angle

static rolling moment coefficient calculated with vortex at hysteretic position Xk + &rk,Yk at



fXunsteady

Fy

fYunsteady

f

g

h

Ii

i

k

L

1

lh

lp

ls

MV

P

q

r_

/_o

S

t

U

u_

unsteady force on wing cross section in x-direction, lb

steady pressure force on wing in y-direction, lb

unsteady force on wing cross section in y-direction, lb

oscillation frequency, cycles/sec

influence coefficient, which, when multiplied by vortex circulation for symmetric vortex

alignment, gives X-axis velocity induced at given primary vortex center by other vortices

in system

influence coefficient, which, when multiplied by vortex circulation for symmetric vortex

alignment, gives Y-axis velocity induced at given primary vortex center by other vortices in

system

wing moment of inertia about longitudinal (roll) axis, slug-ft2

unit vector along imaginary axis

constant used to account for difference between experimental rolling moments and calcu-

lated, attached-flow rolling moments

length of wing root chord, fl

distance along wing root chord, positive from nose rearward, fl

rolling moment caused by hysteretic effects, fl-lb

rolling moment caused by wing rolling velocity, fl-lb

static wing rolling moment, fl-lb

linear momentum, lb-sec

static pressure, lb/fl 2

1 oU2, lb/fl2
free-stream dynamic pressure,

scalar distance to primary vortex center in c_-plane, _x 2ck+ Yck2 , ft

radius of cylinder in c_-plane, fl

wing area, ft2

time, sec

X-axis component of velocity that results from free-stream flow around wing at given cross

section, nondimensionalized with respect to Uo_ sin c_

free-stream velocity, ft/sec



I1

V

V1Tlax

V

W

W

X

X

Xc

Xc k

Yl

_2

Y

Y

yc

Gt

Fk

Y

6

X-axis component of velocity at center of primary vortex, nondimensionalized with respect

to Uo_ sin

Y-axis component of velocity that results from free-stream flow around wing at given cross

section, nondimensionalized with respect to Uo_ sin c_

maximum velocity along either cylinder or _ = 0 streamline in figure 6, ft/sec

Y-axis component of velocity at center of primary vortex, nondimensionalized with

respect to Uo_ sin c_

complex potential of flow field, q_ + iW, ft2/sec

complex conjugate of W

coordinate axis normal to wing cross section (see fig. 1)

X-axis coordinate (see fig. 1)

coordinate along real axis in circle plane (see fig. 2(a))

xc distance to centroid of vortex pair consisting of vortex k and its image (see fig. 9(b))

state variable,

state variable, dqb
dt

coordinate axis that lies in and is parallel to plane of wing cross section (fig. 1)

Y-axis coordinate (fig. 1)

coordinate along imaginary axis in circle plane, ft2/sec (see fig. 2(a))

wing angle of attack, deg

wing sideslip angle, deg

circulation of vortex k, positive clockwise in first (+x, +y) quadrant ofX-Yplane, ft2/sec

rolling moment reduction factor, defined by equation (42)

hysteretic deflection of vortex in x-direction, ft

hysteretic deflection at wing trailing edge of vortex in x-direction, ft

wing semiapex angle, deg

complex coordinate of primary vortex center in _-plane, _ + i_l, ft

coordinate along imaginary axis in _-plane, ft



A

X

P

c_

o

• _=0o

¢%=o°

¢

(_max

qs

_Pk,=oo

Subscripts:

k

angle between real axis and line extending from axis origin through primary vortex center

in o-plane, deg

wing sweep, deg

complex coordinate of primary vortex center in physical plane, x + iy, ft

complex coordinate of separation point at wing leading edge in Brown and Michael model

of reference 16, fl

complex conjugate of)_, fl

coordinate along real axis in _-plane, ft

fluid density, lb-sec2/fl 4

complex coordinate of primary vortex center in circle plane, xc + iyc, fl

complex conjugate of o

velocity potential, equal to real part of complex potential, fl2/sec

velocity potential with wing at zero roll angle, fl2/sec

velocity potential for vortex k with wing at zero roll angle, fl2/sec

wing roll angle, deg

maximum amplitude of wing rock oscillation, deg

stream function, equal to imaginary part of complex potential, fl2/sec

stream function defining streamline on which vortex k lies with wing at zero roll angle,

ft2/sec

primary vortex index: 1 when referring to conditions at center of vortex 1; 2 when referring

to conditions at center of vortex 2 (fig. 2)

te wing trailing edge

Mathematical Development

Basle Assumptions

The present method makes four basic assumptions about the flow field. First, the flow is assumed

incompressible and inviscid. Second, all of the vorticity generated by flow separation at the leading edge

of a delta wing at an angle of attack is assumed to be concentrated in two primary vortices that form

above the wing and for which the viscous core region is small enough to be neglected. Third, the flow is



assumedto beconical.Thisthirdassumptionallowstheproblemto betreatedasa two-dimensional
problemin thecross-flowplaneof thewing(theaxissystemforthewingandcross-flowplaneis shown
in fig. 1)andplaysanimportantroleinestablishingsomeof theboundaryconditionsneededin thesolu-
tion. Thefourthassumptionis thatthetwo-dimensionaltimeanalogyapplies.Accordingtothisanalogy,
changesthattakeplacewithdistance,in goingfromcrosssectionto crosssectionalongtheaxisof a
three-dimensionaldeltawing,areequivalenttothosethatwouldtakeplacewithtimefor aplatewhose
spanis increasingwithtimeinatwo-dimensionalflowfield. (Foranexampleof theuseofthetimeanal-
ogy,seeref.21.)Thisanalogyallowstimein theunsteadytwo-dimensionalflowtoberelatedtodistance
inthethree-dimensionalflowas

dl
dt = -- (1)

V_ COS C_

In addition to these basic assumptions, other assumptions have been made throughout this report in

connection with the development of boundary conditions and the determination of wing moments. These

assumptions are indicated and discussed as they arise in the model development that follows.

U

Figure 1. Wing axis system.

Basic Flow Model

General Description

Under the assumptions of an incompressible inviscid fluid, the governing equation for the flow is

Laplace's equation. The problem is to find a solution in the form of a complex potential that satisfies

Laplace's equation, subject to the appropriate boundary conditions. In the present method, the flow in the

crossplane is first modeled in a complex c_-plane (fig. 2(a)), where the complex potential can be con-

structed from known elementary potential functions and a tangent flow boundary condition can be applied

to the body. The flow in the c_-plane is then transformed into flow about the wing in the physical )_-plane

(fig. 2(b)) where the boundary conditions on the vortices are applied. In the c_-plane, the flow model con-

sists of two logarithmic vortices, of strengths F1 and F2, placed behind a two-dimensional circular cylin-

der (the cross-flow velocity in fig. 2 is from left to right). Image vortices, with strengths equal and oppo-

site to those of the primary vortices, are placed inside the cylinder to satisfy the tangent-flow boundary
condition at the surface.
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Figure 2. Vortex system in c_-and X-planes.

Complex Potential for Wing-Vortex System

For the most general case in which the vortices are asymmetrically aligned and the wing is rolled

through an angle 4, the complex potential for the flow about the wing-vortex system in the (J-plane is

W(o,qb) = qb+ itp

= sinc_II[ o (cos qb+ i sinqb) + 1

L l o"

[_ro ro/ lro -_/J [_ro ro /
(2)

The first term in the first set of brackets on the right-hand side of equation (2) is the complex potential

for a free-stream flow inclined at angle _ with respect to the real Xc-axis. The second term in these

brackets is the complex potential for a source-sink doublet that is also aligned at angle _ with the real

axis. The remaining terms on the right-hand side represent the contributions of the primary vortices and

their images. The complex potential given by equation (2) has branch points at the centers of each pri-

mary vortex and its image and is, therefore, multivalued. It can be made single-value_allowing a

unique solution to be obtained for a given set of boundary conditions_y drawing branch cuts between

the primary vortices and their images.



Coordinate and Velocity Transformations

The flow in the physical )v-plane is for a flat plate, which at zero roll is aligned perpendicularly to the

free stream. The equation for transforming coordinates from the c_- to the )>plane is

2 (3)

Transformations for going back and forth between any of the three complex planes used in the present

analysis are given in appendix A.

Flow velocities in the physical plane are obtained by taking the derivative of the complex potential

with respect to )v (the coordinate in the physical plane). This derivative can be written as

rF
 _iv=l dW_l dwdo= l/,cos +/sin ,

U_osino_ dE U_osino_ do dE L[ 1.102 (cosqb + i sinqb)
2

ro

1

o o 1

ro ro

-- + iC 2
o_ o

ro U1 }] ro

1

°2 0

ro ro

1 1+ a

_2

(4)

Note that when equation (4) is used to obtain the velocity at a given vortex center, the velocities

induced by that vortex on itself are neglected.

vortex 1) is to be determined, the term

o o 1

ro ro

For example, when the velocity at c_ = (J 1 (the center of

which otherwise would be infinite, is set equal to zero.

(5)

Solution Procedure

The equation for the complex potential (eq. (2)) contains six unknowns: Xl, Yl, x2, Y2 (the coordinates

of the centers of the two primary vortices), C1, and C2 (the nondimensional strengths of the vortices).

These positions and strengths can be determined by applying the appropriate boundary conditions; once

they have been determined, the rolling moments caused by the vortices can be computed and used in

the equation of motion for the wing-vortex system to generate wing rock oscillations. In the present

method, the static vortex positions and strengths are determined first for symmetric zero roll by using

motion and force restraints on the vortices, along with the equation relating the force on the vortex system

to its rate of change of momentum. Information about the streamlines on which the vortices are located

for the symmetric roll angle is then used to obtain vortex positions and strengths for the asymmetric

nonzero roll angles. Flowcharts outlining the procedures for determining the vortex positions and

strengths for zero and nonzero roll angles are presented in figures 3(a) and (b), respectively. These can be

10



usedasthebasisfor generatingcomputercodesforperformingthecalculationsrequiredin thepresent
method.Theboundaryconditionsneededto applytheseproceduresarestatedanddiscussedin thefol-
lowingsections.

Determinationof StaticVortex PositionsandStrengthsat ZeroRoll Angle

Withthewingatzerorollangle,thevorticesaresymmetricallyalignedabouttheX-axes, so that

X 2 = X 1

Y2 = -Yl

C 2 = -C 1

(6)

Therefore, only the coordinates and circulation of one of the primary vortices must be determined. In the

discrete-vortex methods of references 13 and 14, these three unknowns were determined by imposing a

zero-force condition (which provided two of the needed equations) and a Kutta condition (which provided

the third). In the present investigation, these unknowns were determined by applying three symmetric

boundary conditions (S-l, S-2, and S-3) involving vortex motions and forces.

Symmetric Boundary Conditions for Wing at Zero Roll Angle

S-1. The velocity at the primary vortex centers is in the radial direction. This condition allows non-

dimensional vortex strength to be determined according to the equation:

C 1 = -C 2 V1 - U1 (Yl/XO (7)
h1 - gl(Yl/Xl)

S-2. The force on the vortex system in the x-direction (normal to the wing) is equal to the rate of

change of momentum of the vortex system in the x-direction, a condition expressed by the equation:

Re i 1 dW d )" =4gC 1 rcl 1

o_U_sinc* d_. ) \ a / ] _ ro rcl / ro

tan 6
sin 01 -- (8)

tan c,

where the integration in equation (8) is carried out around a path Co that includes only the two primary
vortices.

S-3. The maximum lateral force for the flow is equal to the maximum lateral force that would be

exerted at the wingtip in attached flow, a condition expressed by the equation:

Im U_ sine* d?_
0

(9)

The term on the left-hand side of equation (9) is the absolute value of the computed force coefficient; the

path of integration is taken around only one of the primary vortices and not around any other singularity
in the flow field.

These three boundary conditions are applied according to the procedure outlined in figure 3(a), and are
discussed in detail in the next sections.
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Figure 3. Flowcharts of procedure for determining static vortex positions and strengths.
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Discussion of Symmetric Boundary Conditions

Radial-Velocity Condition (S-I). The radial-velocity condition is one of the conditions imposed for

cones in reference 18 and determines the vortex circulation for a given vortex location. It is based on the

fact that the conical flow assumption for a delta wing requires the vortex centers to move radially away

from the centefline of the three-dimensional wing as the vortices progress from one cross section of the

wing to the next. Since the primary vortices are assumed to be flee vortices, each moving in the direction

of the local flow velocity at its center, this condition is satisfied if the local induced velocity at the center

of each primary vortex is directed radially outward, along a line that extends from the center of the plate

through the vortex center (see fig. 2(b)).

To determine the vortex circulation using this condition, the x- and y-components of the velocity (see

eq. (4)) at the center of one of the primary vortices are first written in the form of a free-stream compo-

nent plus an influence coefficient times the nondimensional circulation of the vortices as follows:

v 1 =V 1+hlC 1 (10)

u1 = U 1 +glC1 (11)

Then if the velocity is radial, the slope Vl/Ul of the velocity vector must equal the slope yl/X1 of the line

running from the origin through the vortex center; that is:

Vl _ gl + hlC1 _ Yl

Ul U1 + glC1 Xl
(12)

Collecting terms gives

(13)

Solving for C1 gives equation (7).

Applying the radial-velocity condition will give the nondimensional vortex strength for any assumed

value of Xl andyl. This operation is performed in the top part (down through the element C1) of the flow-

chart in figure 3(a). Contour lines showing the positions that the vortices would take for specified values

ofnondimensional vortex strength are shown in figure 4.

X-Axis Momentum Condition (S-2). Equation (8) is the equation of motion for the vortex system. It

replaces the zero-force condition of the Brown and Michael (ref. 16) and Bryson (ref. 17) models in

which it was assumed that the force on the straight-line feeding sheet connecting each primary vortex to a

separation point on the body is balanced by the force caused by induced effects at the vortex center. In

the Brown and Michael and related models, these feeding sheets serve as the branch cuts needed to make

the complex potential for the vortex system single-valued, and, as such, are subjected to a force (see

ref. 17). Across such a branch cut, the velocity potential • changes by the amount F, the vortex circula-

tion, so that when F changes with time, the pressure difference across the sheet is

d_ dF k (14)
alP=P7 =P
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Figure 4. Lines of constant circulation in X-Y plane.

When integrated over the length of the feeding sheet, this pressure difference results in a pressure force of

Fr, (15)

In the Brown and Michael model, this pressure force is balanced by a force resulting from a nonzero

velocity at the vortex center, a force given by the Kutta-Joukowski theorem as

=ipFlJVk d_'k IFv
-7-J

(16)

Setting the sum of forces FFS and F V equal to zero gives the zero-force conditon used in the basic Brown
and Michael model as

(17)

Although the Brown and Michael zero-force condition has been used extensively in discrete-vortex

models, it is not a valid condition. As indicated in appendix B, the force on the feeding sheet is an un-

steady force caused by changes in vortex strength and, as such, should not be balanced by a steady force
at the vortex center.

Instead of using the Brown and Michael condition, the present method specifies a force balance by

equating the X-axis force on the vortex system to the rate of change of momentum in the x-direction of the

vortex system. (In the y-direction, the net force and the rate of change of momentum of the vortex system

are both zero for the zero roll case; therefore a Y-axis momentum equation would not provide any useable
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information.)In thex-direction, the force on the vortices obtained by Blasius integration (see eq. (B1) of

appendix B) can be expressed in nondimensional form as

Re

where the integration is carried out around a closed path Co, taken in the counterclockwise direction, that

encircles the two primary vortices but not any other singularities. The force on the wing, which can be

obtained by integrating around a path that includes the wing but not the vortices, will be equal and

opposite to this force on the vortices.

The rate of change of momentum of the vortex system is determined in the c_-plane (see fig. 2(a)),

where the primary vortices appear as pure logarithmic vortices whose complex potential has the form

W(o) = -_ In (O-Ok) (19)
2n

For a pair of vortices with this mathematical form, the momentum is equal to pF times the distance

between the two vortices. That is, in the c_-plane, the momentum in the direction of the real axis for a

vortex pair consisting of the upper primary vortex and its image is equal to

r2
MV = ipF k rk _ . o _sin 0/_

rk]

(20)

In the direction of the real axis, the total momentum for the two pairs forming the vortex system is twice

the momentum calculated in equation (20).

The rate of change of momentum of the vortex system can be written in terms of conditions at

vortex 1, for which the circulation is positive, as

dt
--=2pFld(rl-r21sinO1 + 20 rl-'° /sin 01

dr/ n )
(21)

As discussed in appendix B, the unsteady force caused by changes in vortex circulation (the second

term on the right-hand side of eq. (21)) is exactly equal to the rate of change of momentum caused by

changes in vortex circulation, regardless of where the vortex center is located. No new information can

be obtained, therefore, by equating force caused by changes in circulation to the rate of change of

momentum caused by changes in circulation. In the present analysis, therefore, neither the unsteady force

caused by changes in vortex circulation nor the change in momentum resulting from changes in circula-

tion is considered when determining vortex position.

Equation (21), without the term for rate of change of circulation, can also be written as

r 2 ] dr o da dld(MV)_2pF1 d (r 1-'° sin 01

dt dr o _ r1 ] da dl dt
(22)
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Bymakingthesubstitutionsro = a/2, da/dl = tang, and dl/dt = U_ cos _t, equation (22) can be written as

dt pF1 rl_ .o sin 01tan6 U_cos_t (23)
rl)

In evaluating the derivative with respect to ro in equation (23), it should be noted that rl can be written

as rl = ro(rl/ro), and that the quantity (rl/ro) is constant for each station of the delta wing in conical flow;

hence, drl/dro = rl/ro. Thus, equation (23) can be written as

- oF 1 --to rl/ro- sin 01 tan 8 U_ cos c_
(24)

In nondimensional form this becomes

pU_a _ -27t --ro rl/ro- C 1sin 0 ltanc_tanSsin2c_
(25)

Equating this nondimensional change in momentum to the force coefficient given by equation (18) yields

the momentum equation for the symmetric vortex system, given by equation (8).

For a given value of tan cdtan 8, equation (8) will be satisfied for certain values of Xl and Yl, the vor-

tex coordinates in the physical plane. As shown in the flowchart of figure 3(a), once initial values of Xl

and Yl have been specified, C1 can be determined from the radial-velocity boundary condition (S-l), and

Xl can be iterated to get the final values of Xl and Yl that will satisfy equation (8). Contours of constant

tan cdtan 8, obtained by applying the X-axis momentum condition, are shown along with the constant Ck

contours, obtained by applying the radial-velocity condition, in figure 5.

Maximum Lateral Force Condition (S-3). Conditions S-1 and S-2 would provide the information

needed to determine vortex positions and strength if the circulation produced by the flow separation at

the wing leading edge were known. For cones in reference 18, this circulation was calculated as being

proportional to the square of the edge velocity at the separation points on the cone, and although the loca-

tions of the separation points on the cone surface could not be determined using the method of refer-

ence 18, they could be approximated with available experimental data. The velocities at these separation

points, as well as at all points on the cone surface, are finite, and the circulation being made available for

vortex formation could be calculated.

For delta wings, on the other hand, although the flow is known to separate at the sharp leading edges

of the wing, the velocity at the separation points, at least in the present model, is infinite. Therefore, sepa-

ration point velocities cannot be used to calculate the vortex circulation. Condition S-3 is a way of

working around this problem. Instead of determining vortex positions and strengths by calculating the

circulation made available for vortex formation, they are determined by putting a limit on the maximum

force that can be produced on the wing by the flow field around it. This condition assumes this force

cannot exceed the leading-edge suction force that the wing would develop with completely attached flow.

Condition S-3 is strictly an assumption, presented without proof, but is analogous to the maximum-

velocity condition imposed for a two-dimensional circular cylinder with trailing vortex flow in

reference 22. Figure 6 illustrates this analogy by presenting attached- and separated-flow velocity

17



_'l/a

1.0

.8

.6

.4

.2

tau ct/tan 6
.30 .50.75 1.0

x \

- _l \gl

/

I

I I

| I

1.5 2.0 3.0 4.0 5.0

'\ '_\_ \_ I I /' ' 10.0\ \ I _ I_, I 1/
I \ I _1 /

\1 \ I \ I _, / / / /
I'_ _ I \ I / x / / / /

I _ i I\ I \_ I _x I I ii
\ Xl I\1 / /_ / /

_1 i x i /_ / / /_ ,. /.

x/ ix/ , ",- ., -" 12 1

\/ / //_/ ,.t _' 1.0
I_ &l II I /.. ..* .s

I I Ii ")'_ I,s_"
/0 >_,I ' I/

' i _111 II

I I / '_11 Ii

' ,, _)_".4

'>'a_'.2

Ij

_, , , , I , , , I , , , I , , , I , , , I

0 .2 .4 .6 .8 1.0

xila

Figure 5. Lines of constant circulation and of constant tan a/tan 8.

distributions for the circular cylinder of reference 22 (figs. 6(a) and (b)) with typical attached- and

separated-flow force distributions computed for the delta wing cross section by Blasius integrations

(figs. 6(c) and (d)).

To obtain solutions in reference 22, the assumption is that when the flow behind the cylinder separates

and forms into vortices, the maximum flow velocity possible with vortex flow should be the same as that

for the cylinder with attached flow. As shown in figure 6(a), with attached flow, the flow velocity

reaches a maximum value of 2U_ at the points x = 0, y/ro = --1 on the surface of the cylinder; with sepa-

rated flow (fig. 6(b)), it reaches a maximum at a point that lies above and slightly behind the vortex center

on the W = 0 streamline that surrounds each vortex. In reference 22 the assumption is that this maximum

velocity, regardless of where it occurs in the vortex flow field, must still be equal to 2U_ as shown in

figure 6(b). For this velocity to be higher than 2U_ would mean that the vortices were adding energy to

the outer flow instead of deriving their energy from it.

Condition S-3 is a similar condition but places a limit on the forces acting at the delta wing cross sec-

tion, rather than on the velocities. The maximum vortex force for a delta wing with attached flow is that

given by the Polhamus leading-edge suction analogy (ref. 23). This force can be determined by Blasius

integrations around half the wing cross section, and for a flat-plate cross section it has a value at each

leading edge (in coefficient form) of (_/2) sin2 c_, as shown in figure 6(c). (These forces, according to the

Polhamus leading-edge suction analogy, turn 90 ° to become the normal force on the wing.) This force

arises from the fact that although there are infinite velocities and pressures at the leading edges of the

wing with attached flow, they act over an essentially zero area to produce a finite lateral force.

With separated flow (fig. 6(d)), there is still an infinite velocity but a finite force at the leading edge

because a Kutta condition is not being satisfied in the present model; however, these calculated forces are
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Figure 6. Maximum-force condition assumed in present model.

no longer the maximum forces, which occur instead at the vortex locations. For c_ = 30 ° shown in fig-

ure 6(d), for example, the lateral force coefficient at each leading edge of the cross section is equal to only

0.11, whereas the maximum lateral force coefficient occurs at each primary vortex center and is assumed

to have a value of 0.39 (the value of (n/2) sin2 c_ at c_ = 30°). Setting the total of the lateral force for the

two primary vortices equal to the leading-edge force for attached flow gives the condition expressed by

equation (9).

The steps in applying this boundary condition are included in the bottom part of the flowchart in fig-

ure 3(a). The vortex center locations for the symmetric case are found by iterating along a curve for a

given tan a/tan 8, such as one of those shown in figure 5, until an xl,y 1 location is found for which equa-

tion (9) can be satisfied. The resulting curve, labeled "Vortex center locations" in figure 7, represents the

locus of vortex centers for which all three of the previously described boundary conditions are satisfied

simultaneously.
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Determination of Static Vortex Positions and Strengths at Nonzero Roll Angle

When the wing is rolled, the primary vortices become asymmetrically aligned and have different cir-

culation strengths (see fig. 8); consequently, all six unknowns in the equation for the complex potential

(eq. (2)) must be solved for instead of only three. In the present method these unknowns were determined

by applying the six asymmetric boundary conditions (AS-1 AS-6) stated and discussed in the following

sections. The first three conditions involve assumptions about how the primary vortices position them-

selves in response to changes taking place in the underlying potential-flow field when the wing is rolled;

the remaining three consist of radial-velocity and momentum conditions similar to those applied in the

symmetric case.

Asymmetric Boundary Conditions for Wing at Nonzero Roll Angle

AS-1. Vortex 1 remains on the same attached-flow streamline, deflecting laterally with the streamline,

as the wing is rolled. That is,

_1 = qJl,=oo (26)

AS-2. Vortex 2 remains on the same attached-flow streamline, deflecting laterally with the streamline,

as the wing is rolled. That is,

q J2 = qJ2,=oo (27)
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Figure 8. Asymmetric vortex arrangement with wing at nonzero roll angle.

AS-3. At any given roll angle, the two primary vortices both lie on one of the velocity-potential lines

defined for the body without vortex flow at a zero roll angle. In the o-plane where the cross-flow velocity

is Uoo sin c_, these lines are defined by (ref. 18)

Oq_=oo = -Uoo sinc_xc 1+ r_.2] (28)

In the _-plane, this condition is met if the two primary vortices lie along the same _ = Constant line; that

is, if

E1 = _2 (29)

AS-4. The velocity at the center of vortex 1 is in the radial direction.

AS-5. The velocity at the center of vortex 2 is in the radial direction.
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AS-6.Theforceonthevortexsystem,inthedirectionnormaltothewingcrosssection,isequaltothe
rateof changeofmomentumof thevortexsystem,in thedirectionnormalto thewing. Thisconditionis
expressedbytheequation:

Rei sin0 +C2-- sin02--
o' U_ sin c_ an ) \ a/] [ _ r0 Ft. 1 / r0 _ r0 Ft. 2 / r0

tan 6
(30)

tan c_

Discussion of Asymmetric Boundary Conditions

Attached-Flow Streamline Conditions (AS-1 and AS-2). These two conditions are based on the

assumption that the changes in vortex position when the wing is rolled reflect changes in the underlying

potential-flow field when the wing is rolled. Streamlines of this underlying flow field are shown in fig-

ure 9 for the _- and o-planes (appendix A), the two complex planes for which the vortices can be repre-

sented mathematically as pure logarithmic vortices.

The surrounding flow field in these planes can be considered to consist of the two primary vortices

imposed on a basic attached flow_he flow that would exist if there were no separation and no vortex

formation. In the o-plane, the flow streamlines are defined, in the general case where the free stream is

inclined at an angle _ with respect to the Xc-axis, by the equation:

W = -U_ sin _ (x c sin qb+ Yc cos qb)[1

2
a

2

(XcCOSqb-ycsinqb) +(Xcsinqb+ycCOSqb) 2
(31)

Figures 9(a) and (b) show representative attached-flow streamlines for the zero roll case; rolling the

wing in the present model amounted to rotating the free-stream velocity and these streamlines through an

angle _ with respect to the body-fixed axes, as shown in figures 9(c) and (d). At a zero roll, the primary

vortices are located along the _1,=0o = Constant and _2,=0o = Constant streamlines, which are shown as

dashed lines in figure 9. Conditions AS-1 and AS-2 assume that these primary vortices will stay on these

streamlines and rotate with them as the wing roll angle changes. For example, calculations made in

this report show that at c_ = 30 °, vortex 1 lies on the streamline Wl,=0o = 0.31, and vortex 2 lies on the

streamline _2,=0o = 0.31. Thus, at c_ = 30 °, the two primary vortices will continue to lie on these

respective streamlines regardless of the roll angle.

Constant Velocity-Potential Condition (AS-3). This condition is a result of the flow field being

irrotational. When the wing roll angle changes and the primary vortices move with the streamlines as the

streamlines rotate through the angle _ (as required by conditions AS-1 and AS-2), they must do so in

such a way that the vortex system as a whole does not rotate with respect to the body. That this require-

ment can be expressed in terms of lines of constant velocity potential can be seen by examining the defi-

nition of these lines in _- and o-planes used in the present analysis.

In the _-plane, the velocity potential for _ = 0° is given by

• q)=Oo = U_a sin c_--_ (32)
a
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Figure 9. Streamline and vortex arrangement for flow in _- and o-planes at zero and nonzero roll angles.

23



(c) _-plane; nonzero roll angle.
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(d) c_-plane; nonzero roll angle.

Figure 9. Concluded.
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and in the c_-plane, it is given by

_q_=o o =U_sinaxc(l+_l

\ r_./

(33)

Therefore, if in the _-plane the center of one of the primary vortices is located on the velocity-potential

line qbk,=0o, then according to equations (32) and (33) the nondimensional distance _k/a to this vortex

center can be written as (see also fig. 9(b))

_k _ qDk*=o°

a aU_ sinc_ -xc'k2ro 1+_- to[2 _ c'k r_'k r_'k ]J ro
\ c'k /

(34)

Hence, while in the _-plane, _k/a represents the nondimensional distance to a line of constant non-

dimensionalized velocity potential, that is, the velocity potential divided by aU_ sin c_ (see fig. 9(a)), in

the c_-plane it represents the distance to the centroid of the vortex pair formed by a primary vortex and its

image (see fig. 9(b)). (Note that because the two vortices are of equal and opposite strength, this centroid

lies midway between the primary vortex and its image.) The centroids for the two vortex pairs are desig-

nated dl and d2, respectively, in figure 9.

Consequently, if the two primary vortices always lie on a common _k,=oo line regardless of the wing

roll angle_hat is, if

_1,=o o = _2,=o o (35)

then in the _-plane,

E1 _ _2

a a

(36)

and there will be no rotation of the two primary vortices (compare fig. 9(a) with fig. 9(b)). In the c_-plane,

there will be no rotation of the line between dl and d2 that connects the centroids of the two vortex pairs.

That is, the relationship

m m

Xcl _ Xc2

ro ro
(37)

will apply, so that the line between dl and d2 will always remain parallel to the iYc-axis (which

corresponds to the plane of the wing in the )_-plane) as the wing roll angle changes (compare fig. 9(b)

with fig. 9(d)). Applying condition AS-3 will ensure there is no rotation of the complete vortex system in

either the _- or c_-planes, where the vortices are represented as pure logarithmic vortices. This condition

should also ensure irrotationality in the )_-plane, where because of the conformal transformation involved,

the vortices can no longer be considered pure logarithmic vortices.
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Radial-VelocityConditions (AS-4 and AS-5). AS-4 and AS-5 are the same conditions as condition

S-1 for the symmetric case, but are applied separately at the centers of the two asymmetrically aligned

primary vortices. Applying these conditions gives two equations similar to equation (13) for the symmet-

ric case, but each equation contains the circulation strengths of the two vortices. These two equations can

then be solved simultaneously to determine the two strengths. The procedure for solving these equations
is described in reference 18.

Momentum Condition (AS-6). Boundary condition AS-6 is the same as condition S-2 for the sym-

metric case, except that it is applied here to asymmetrically aligned vortices. Equation (30) represents the

more general form of equation of motion for the vortex system, containing the coordinates and circulation

strengths of two vortices instead of just one vortex.

Application of Nonzero Roll Boundary Conditions

The basic mechanism by which the two primary vortices move with respect to the wing when the wing

is rolled is that they move with the underlying potential flow streamlines as these streamlines change

directions with respect to the wing (conditions AS-1 and AS-2); furthermore, they must both always

remain along one of the velocity-potential lines that is fixed with respect to the wing (condition AS-3).

The procedure for determining the static vortex positions and strengths at any given roll angle that result

from this type of movement is that outlined in the flowchart of figure 3(b).

The procedure assumes that for a given wing at a given angle of attack and roll angle, the streamlines

for _ = 0° have been obtained by applying the symmetric boundary conditions. It begins in the _-plane

(see fig. 9(a)) where the _ = Constant lines, which correspond to constant _ = 0 ° velocity-potential lines

and do not change with roll angle, are straight lines running perpendicular to the real axis. The stream-

lines, which do change with roll angle, are defined by

qJ=aU_sina[_ cos qb+Im (iI(_+i_)2-1/sin qb]
(38)

A _ = Constant line, along which the two primary vortices are assumed to lie, is chosen in the _-plane,

and by iterating on _1 at this value oft using equation (38), a value of_ can be found that matches the

value for the symmetric case. This process is completed for both primary vortices and establishes

tentative _ and _1 coordinates for the primary vortex centers. The vortex circulations can be determined

by transferring these coordinates to the )_-plane and applying the radial-velocity conditions AS-4 and

AS-5. The momentum condition AS-6 (eq. (30)) is then applied, and if the force on the vortices is not

equal to the rate of change of momentum of the vortex system, then another value of _ is selected and the

process is repeated. By iterating on _ in this way, values of El,Ill and _2,_12 can be found for which

conditions AS-3 through AS-6 are satisfied, and from these values the vortex center coordinates xl,Yl and

x2,y 2 can be determined in the real )_-plane.

The vortex positions in all three planes considered in the present analysis that result from applying this

procedure are shown for wing roll angles of 0°, 22.5 °, and 45 ° in figure 10. The x- and y-coordinates of

the vortex centers determined by the previously described method are given in table 1 for wing roll angles

from 52.5 ° to +52.5 ° and angles of attack from 10° to 40 °.

26



_-plane

U sin c_

(>plane

'tu -- 0.3088_

Primary \ i//'- _*=°_

_ "%----Primary
' vortices

(a) _ = 0°.

0.9579

£-plane

'tu = 0.3088

_I},=0o= 0.9957

(b) _ = 22.5 °.

\
= 0.3088

• _=0o----1.0868

(c) d?= 45 °.

Figure 10. Vortex positions with roll angle shown in three complex planes used in present analysis.

Determination of Dynamic Vortex Positions and Strengths

The experimental data indicate that a hysteretic effect on vortex position probably causes wing rock

(see, e.g., refs. 1 4). When the wing is given a rolling velocity, the primary vortices move away from

their static positions at a given roll angle; for a positive rolling velocity, the vortex on the side of the

down-going wing will move away from the wing and above its static position, while the vortex on the

side of the up-going wing will move toward the wing and below its static position. These displacements

cause incremental rolling moments, which, at the lower roll angles at least, are destabilizing. In the

present method, the hysteretic deflections are modeled as displacements of the primary vortices from their
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staticpositions;thedisplacementsaredeterminedfromthestrictlykinematicrelationshipderivedin
appendixC. Equation(C8)ofappendixCgivesthedisplacementinthex-direction as

a a _2Ufsinc_ ] _2tan6]
(39)

The hysteretic displacement in the y-direction was assumed to be zero, an assumption that is consistent

with the experimental data of references 1 and 4.

As derived in appendix C, the hysteretic deflection is equal to the product of the nondimensional lat-

eral coordinate of the vortex center, the nondimensional roll rate of the wing, and a nondimensional time

that is constant for the wing and can be expressed in terms of the quantity tan c_/tan 8. Equation (C8)

assumes each primary vortex is approaching the wing at a velocity ofyk _ while the wing remains station-

ary. Using equation (C8) to compute hysteretic effects eliminates the need to employ a source-sink

distribution on the cylinder surface in the c_-plane (the procedure used in refs. 13 and 14 to simulate

unsteady flow conditions) and greatly simplifies the computational procedure.

The strengths of the primary vortices in their hysteretic positions were computed by applying the

radial-velocity conditions at each vortex center as described previously.

Determination of Wing Rolling Moments

Calculating the wing rolling moments was a problem in developing the present method because the

model, which uses just the two primary vortices to represent the vortex flow field, neglects the secondary

and tertiary vortices that, in a real (viscous) flow, form near the wing leading edges. In a real flow, these

secondary and tertiary vortices help smooth out the flow at the leading edges so that a Kutta condition can

be met. Without these vortices, calculated velocities and pressures at the leading edges are infinite, so

that Blasius integrations around the wing to obtain wing rolling moments do not give the correct values.

To overcome this problem, methods that did not rely on integrations around the wing had to be used to

compute the wing rolling moments.

Static Rolling Moments

The static rolling moments in this report were computed by using equation (D2) given in appendix D,

but with the equation modified by multiplying the right-hand side by a constant k. This modified equa-

tion gives the static rolling moment coefficient for a given wing angle of attack and roll angle as

C 1 = -k _--sin 2 c_ sinqb cosqb (40)
3

In this equation, k is a constant used to account for the difference between the calculated attached-flow

rolling moments and the experimental moments and is thought to be necessary to account for wing

thickness effects (as is discussed further in the sections on wing rock results).
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Moments Caused by Hysteretic Deflections of Vortices

The wing rolling moment increments resulting from hysteresis in the present method were calculated

by the method outlined in appendix D, which involved Blasius integrations around the two primary vor-

tices instead of around the wing. The formula used to compute hysteretic moments was

Clh = k_ AClh (41)

In this equation, k is the same constant used in calculating static rolling moments, as described previ-

ously, and accounts for the difference between calculated and experimental rolling moments. The

parameter y in equation (41) is a reduction factor used to reduce the rolling moments obtained by inte-

grating around the vortices to the level of those developed by the wing, as described in appendix D. This

parameter is a function of tan cdtan 8 (fig. D6) and could be approximated by

y = 0.00024962 + O.lO19(tan (x/tan 6) - O.O19932(tan (x/tan 6) 2 + 0.001942(tan (x/tan 6) 3 (42)

The incremental coefficient AClh in equation (41) is the incremental moment caused by hysteresis in

the vortex position and was obtained by using the general Blasius equation for moments (ref. 19), which,

in coefficient form, can be written for the wing rolling moment as

CI=_ReI_co_(U _

1 dW

sine, dE
d sin 2 c_ (43)

The incremental moments were obtained by performing two Blasius integrations: one with the primary

vortices in their static positions xk,Yk at a given wing roll angle, and the second with them in their dis-

placed positions xk + Axk,Yk at a given roll angle and roll rate. The incremental moment due to hysteresis
was then the difference between these two values:

AClh = C1 xk+_k,yk - C1 xk'Yk (44)

Attached-Flow Roll Damping

Just as a basic attached-flow lift must be added to the vortex lift to get the total lift on a delta wing

with vortex flow, there is similarly a basic attached-flow roll damping associated with a wing undergoing

a roll velocity. The theorectial value for the attached-flow roll damping coefficient, as derived by Ribner

in reference 24, is

_A

Clp = -_- (45)

In the wing rock calculations in the present paper, this attached-flow damping was added to that caused

by hysteretic effects on vortex position to get the total damping due to roll.
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Wing Rock Calculations

To simulate wing rock oscillations, the vortex positions, strengths, and wing rolling moments,

obtained as described previously, were used in the single-degree-of-freedom equation of motion for the

delta wing about its roll axis:

Izqb + lpqb +/friction + lh + ls = 0 (46)

This equation can be written in nondimensional form as

qSb _ Clp 2_ + C/fri°ti°" + Clh + Cls = 0 (47)

In this equation, Clp is the attached-flow roll damping coefficient, the damping for the wing without

vortex flow given by equation (45). The symbol C/_iotion is the rolling moment coefficient due to friction

in the roll-oscillation apparatus used in a particular wind tunnel test, and Clh is the increment in rolling

moment coefficient caused by hysteretic displacements of the vortices, described in the section "Moments

Caused by Hysteretic Deflections of Vortices." The symbol Cls is the static rolling moment, given by the

suction analogy as

Cls = -k--_sin 2 a sin q_cos q_ (48)
3

To solve this equation, it was put into state variable form by setting

_1 = _ ]
(49)f

This form allowed the second-order differential equation to be expressed as two first-order equations:

Y2 b + ]qSb (50)X2 =- Clp 2Uce C/fricti°n + Clh + CI_ ) I z

In the present method, these equations were subject to the constraints:

xk+kxk_x_k _Yk( x2 b /( tanc_ / l
a a a _2U_sinot)_Ztan6) f (51)

Yk _ Yk I
Ja a

which are the equations specifying the hysteretic positions of the vortices.

These equations were solved using a Runge-Kutta scheme, which went through the following steps in

generating oscillation time histories:
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. The procedure was started at t = 0, d) = 0, and with an initial value of_ (1 ° in most of the calcula-

tions made in this report)

2. _ was computed from equation (47)

3. _ was integrated over an incremental time At to get d), and then d) was integrated over At to get

4. The quantities xk, Yk, Ck, C1s, and Cllxk,y k were determined at the new value of_

,b
5. The new value of d) was used to compute the product of Clp 2U-_ and the hysteretic deflection

Ax k

6. Values of Ck were determined with the vortex centers at Xk + Axk,Yk, and those values were used to

compute Cllxk+AXk,y k and Clh

7. The time was then set to t + At, and the sequence repeated until a complete time history was

obtained

The static vortex positions Xk and Yk were fed into the equations in the form of cubic-spline curve fits

to the data of tables 1 (a) (h). These curve fits gave xk and Yk as functions of _ and were provided for each

of the angles of attack covered by the tables. The vortex circulation strengths for each primary vortex

were calculated at each time step by assuming a radial velocity at each vortex center (conditions AS-4 and

AS-5). The calculations were made for ranges of angle of attack, free-stream velocity, wing sweep, and

moment of inertia that covered those of the available experimental data.

Results and Discussion

Static Vortex Positions and Strengths for Zero Roll Angle

As shown in figure 1 l, static vortex positions at zero roll angle are generally in good agreement with

experimental data and Navier-Stokes calculations (from refs. 2, 11, and 25 29): except at the lower val-

ues of tan a/tan 6, the experimental vortex centers line up along the line of vortex centers determined by

the present method. The experimental data are for wings with different sweeps tested over different

ranges of angle of attack. Figure 12 shows that the agreement with experimental data for the present

method is much better than with either the Brown and Michael (ref. 16) or the Legendre (ref. 30) meth-

ods, which place the vortex centers much farther outboard than the present method.

Figure 13 shows the calculated and experimental (from refs. 2, 25, 26, and 27)y- and x-locations as

functions of tan c_/tan 6. At the lower values of tan c_/tan 6, the vortex center locations determined by

the present method are farther outboard and away from the wing than the experimental values. These

differences between calculation and experiment could probably be attributed to the fact that the present

method neglects the secondary and tertiary vortices which, in the real flow, would fill the space between

the wing and the primary vortices. At the higher values of tan c_/tan 6, where the primary vortices

become dominant, the agreement between calculation and experiment is quite good. The experimental

data indicate that wing rock would be expected to occur at values of tan cdtan 6 > 2.0.
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Figure 13. Calculated and experimental x- and y-locations as functions of tan {x/tan 8.

The present calculations showed that the circulation for delta wings could be defined by the single

curve of Ck versus tan cEtan 6 shown in figure 14 (values of Ck from this curve are presented in table 2).

Although the vortex circulation F varies directly with distance along a delta wing, for an assumed conical

flow the value of Ck (defined as Ck = F/2_a Uo_ sin c0 will be the same at each cross section, and therefore

is a constant for the wing. The curve in figure 14 allows the value of Ck to be determined for any given

wing at any given angle of attack.

Figure 14 presents the calculated values of Ck with experimental values obtained from reference 31

and shows that values from reference 31 are higher over most of the tan cEtan 6 range. However, the

experimental values in figure 14 were obtained by using a cross-wire anemometer, which is an intrusive

technique. These values represent the maximum measured in the tests and may contain the effects of

secondary and tertiary vortices.
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Figure 14. Calculated and experimental variations of nondimensional vortex strength with tan a/tan 3; d?= 0°.

As shown in figure 15, the agreement was much better with the data of reference 32, in which circula-

tion was measured using a novel nonintrusive ultrasound technique. The technique of reference 32

involves sending ultrasonic pulses in clockwise and counterclockwise directions around a fixed path

perpendicular to the delta-wing root chord and then determining the circulation from the transit-time

difference between the two pulses. In figure 15, calculated variations are presented for comparison with

the data of reference 32 in the form of plots of the nondimensional ratio Fk/U_c against angle of attack,

for different chordwise stations and two wing sweeps: 60 ° (figs. 15(a) (d)) and 70 ° (figs. 15(e) (h)).

The calculated values in these figures were determined from the calculated curve of Ck versus

tan c_/tan 8 presented in figure 14 by using the relationship

Fk = 2_C k / tan 8 sin c_ (52)
U_c c

The hatched lines in figures 15(a) (h) denote the approximate angle of attack at which a vortex burst

occurred at each chordwise station in the experiments. The data show that at each wing station and for

both wings, the computed values are in very good agreement with experimental values up to and some-

times beyond the point of vortex breakdown.

Static Vortex Positions and Strengths for Nonzero Roll Angle

Figure 16 shows that, at angle of attack of 30 °, calculated vortex center locations for different wing

roll angles were also in good agreement with the experimental data. Figure 16 presents computed center

locations along with the wind tunnel results obtained by Jun and Nelson in reference 2, for a wing swept

80 ° at roll angles up to 45 °. Figure 16(a) shows the center locations relative to the axis system fixed rela-

tive to the wing; figure 16(b) shows center locations relative to a stationary axis system that rotates with

the wing. These results are for a wing that is rolled through a positive angle 4, for which the vortex on
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Figure 16. Experimental and calculated vortex center locations for different wing roll angles at c_ = 30°.

the right wing panel is located inboard and close to the wing, while that on the left panel is located farther

outboard and away from the wing. Figure 16 shows the agreement to be very good at roll angles of about

30 ° or below. Above about 30 °, the calculated results put the right vortex farther inboard and the left

vortex farther outboard than the experimental results indicate.

The agreement is not as good at the higher angles of attack. The effect of angle of attack on the com-

puted positions is shown in figure 17, which shows that the center locations move away from the wing as

the angle of attack increases, but the increase in distance from the wing becomes small at the higher val-

ues of c_. The wind tunnel results, on the other hand, show vortex centers that are farther from the wing at

c_ = 45 ° than the calculated results indicate they should have been. This difference could possibly be

caused by a bending away from the wing due to the influence of the flow aft of the wing. At c_ = 40 °, the

wind tunnel results show vortex breakdown, indicating that some of this bending has occurred.

The calculated effect of positive roll angle on nondimensional vortex strength is shown in figure 18.

Except for the lowest angle of attack, the circulation is higher for vortex 1, the vortex closer to the wing.

This vortex tends to maintain about the same circulation throughout the range of 4, whereas vortex 2,

which moves out and away from the wing at positive roll angles, loses circulation with increasing values

of 4. This type of variation is consistent with the increase in the static restoring moment on the wing that

occurs when _ increases and no hysteretic effects are present.
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Wing Rock Time Histories

Comparison of Calculated and Experimental Time Histories

The results of the wing rock calculations show that, while in general the present method was able to

model the basic wing rock motion for delta wings, the motions were highly dependent on the static rolling

moment characteristics of the wing. As will be discussed, when the variation of static CI versus

obtained by using the leading-edge suction analogy was used, the rates of buildup were more rapid and

the maximum oscillation amplitude and frequencies were higher than in the experiment; however, when

this variation of static CI versus _ was adjusted to bring it into closer agreement with the wind tunnel

variation, the oscillations were brought into close agreement with the experiment.

Figure 19 presents calculated and experimental wing rock oscillations for a delta wing swept 80 ° at an

angle of attack of 30 °. The experimental data are those obtained in reference 4 in free-to-roll tests of a

wing that was mounted on an air-bearing support system that had essentially zero friction. This wing has a
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vortex center).

root-chord length of 1.3976 r, a span of 0.4921 r, an area of 0.3439 ft2, and a roll axis moment of inertia

of 6.39 x 10-4 slug-ft2. Figure 19 shows both the roll angle time histories and the variations of the static

rolling moment coefficient with roll angle. The variation of CI versus _ for the experimental data was

determined from the roll angle time history as described in reference 4.

Figure 19 shows a close tie-in between the roll angle time histories and the static CI versus _ curves.

Both the experimental and the calculated time histories show that frequency generally decreased as

amplitude of the oscillation increased; this inverse relationship is a consequence of the fact that the oscil-

lation frequency depends primarily on the slope of the CI versus _ curve, and this slope decreases with

increasing roll angle.

The calculated time history (fig. 19(b)) shows a more rapid buildup to a higher maximum amplitude

than for the experimental time history (fig. 19(a)) (the calculated time history reaches d_max of about 52.2 °

instead of about 49.4 ° for the experiment) and has a higher frequency at the maximum amplitude (1.43 Hz

compared with about 1.17 Hz for the experiment). These differences could be attributed to the substantial

differences in the CI at a given _ between calculation and experiment. When the calculated CI versus

curve was generated, it was assumed that the static wing rolling moments were those given by equa-

tion (40), and that the wing had a flat-plate cross section for which k = 1.0. This assumption gave much

higher calculated static rolling moments at a given _ than those shown for the experiment in figure 19(a).

Since the hysteretic moments were assumed to be proportional to the static moments, the hysteretic loops

of the calculated rolling moment variations in figure 19(b) were substantially wider that those for the

experiment in figure 19(a). The higher rolling moment increments produced by these hysteretic loops
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Measured and predicted roll angle time histories and CI variation with d?at c_ = 30 °, d?= 1°, and A = 80 °.

were the reason for the faster rate of buildup and higher maximum amplitude of the calculation compared

with the experiment. The higher oscillation frequencies for the calculation compared with the experiment

could be attributed to the slopes of the C_ versus _ curve being higher than those for the experiment at all

roll angles.

Like figure 19(b), figure 19(c) shows a calculated oscillation time history but with an assumed value

of k = 0.649. Figure 19(c) shows that with this new value of k, the calculated time history is brought into
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close agreement with the experimental data of reference 4 (shown in fig. 19(a)): the calculated rate of

buildup approximately matches that of the experiment, the calculated maximum oscillation amplitude is

about 47.5 ° versus 49.4 ° for the experiment, and the calculated frequency at maximum amplitude is about

1.19 Hz versus 1.17 Hz for the experiment. This closer agreement would then indicate that if the static

rolling moment characteristics of a wing (or possibly a wing-body configuration) could be determined

fairly accurately, the wing rock motions could be approximated fairly accurately.

The lower value of Cl at a given _ for the experiment could possibly be due to a wing thickness effect.

The calculations assume a thin flat-plate wing; the experimental wing had a thickness of 0.25 in., giving it

a thickness-to-span ratio at the wing trailing edge of 4.23 percent. This thickness-to-span ratio increases

as the distance from the wing apex to a given wing cross section decreases and theoretically becomes

infinite at the apex. The type of beveling at the wing leading edge could also account for differences in

calculated versus experimental results. Reference 9 shows significant effects of different types of bevel-

ing on wing rock amplitudes. For example, the wing tested in reference 1 had a sharp upper surface with

beveling on the bottom surface; according to reference 9 this type of beveling would lower the severity of

the wing rock.

Figure 20 provides another set of wing rock time history data for comparison: data from reference 7,

for a wing swept 80 ° at an angle of attack of 25 °. The wing tested in reference 7 had a root chord of

1.0827 ft, a span of 0.3806 ft, an area of 0.3054 ft 2, and a roll axis moment of inertia of 1.566 x 10-4

slug-ft2, and was tested at a free-stream velocity of 49.22 ft/sec. The oscillation shown was initiated at a

wing roll angle of 10 °. The static rolling moment variation with _ for this wing was not provided in ref-

erence 7, nor is it known how much friction was present in the mounting apparatus used in the tests. This

wing had a thickness-to-span ratio at the trailing edge of 1.72 percent and had its sharp edge at the lower

surface with beveling on the upper surface. By setting k = 0.87 and by assuming a value for the structural

present in the tunnel roll apparatus for the tests, the calculated time history could be brought into close

agreement with the experiment for the wing of reference 7. A value of Cl_iction = 0.03 was assumed,

which is about half the value of Clp for the wing with attached flow.

Comparison of Calculated and Experimental Hysteretic Deflections

When the approximation to the experimental static rolling moments was used, the calculated hysteretic

deflections were in good agreement with experimental data of reference 2. Calculated hysteretic deflec-

tion envelopes that assume k = 0.649 are presented for comparison with experimental results in figure 21,

which shows the x versus y position of the vortices during a steady state oscillation at maximum ampli-

tude. Figure 21 shows the calculated envelopes are slightly longer and narrower than the

experimental envelopes, but overall the agreement is good. The y (lateral) and x (normal) hysteretic

deflections are presented as functions of _ in figures 22(a) and 22(b), respectively. In figure 22, the

experimental envelopes are not quite symmetrical; nevertheless, overall there is good agreement between

calculation and experiment.

Causes of Wing Rock and Its Limited Amplitude

The calculated results of the present method verify that as has been indicated by the experimental

results of references 1 through 4_ysteretic deflections of the leading-edge vortices cause wing rock.

The results show that the hysteretic deflections at the higher angles of attack and the lower roll angles

produce the unstable rolling moments that drive the wing oscillation to higher amplitude. Moreover, the
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Figure 20. Calculated amplitude time history and experimental data of reference 7 at c_= 25 °.

calculated results indicate the source of the restoring moments that limit the amplitudes of the oscillation.

When the wing is rolled, the asymmetric vortex arrangement consists of one vortex that is located farther

outboard and away from the wing than the other vortex, which is inboard and close to the wing. The

restoring moments can be attributed to the movement of the outboard vortex to points farther away from

the wing and an increase in the strength of the inboard vortex.

The rolling moments caused by wing rolling velocity are shown for angles of attack of 10 °, 20 °, and

30 ° in figures 23(a), (b), and (c), respectively. Each figure shows total roll damping as a function of non-

dimensional roll rate for wing roll angles of 0°, 15 °, 30 °, and 45 ° . The total roll damping shown is the

sum of the attached-flow roll damping (equal to the attached-flow roll damping coefficient times the non-

dimensional roll rate) and AClh , the incremental hysteretic damping.
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Figure 21. Calculated and experimental normal hysteretic displacement of primary vortices as function of lateral

displacement at c_= 30 °.

Figure 23(a) shows that at c_ = 10 °, the roll damping curves for each wing roll angle fell along a single

straight line; this colinearity was the result of hysteretic vortex deflections at this angle of attack being

very small, so that the hysteretic roll damping moments were essentially zero. The slope of these curves

was approximately equal to Clp_he roll damping coefficient for the wing with attached flow with a

negative slope (negative Clp) indicating stable damping (that is, a positive roll rate would produce a

negative moment that opposes the wing motion). Because the roll damping at c_= 10 ° was stable, wing

rock did not occur at this angle of attack.

At c_= 20 ° (fig. 23(b)), hysteretic vortex deflections were larger, and these larger deflections

decreased the stability to very low levels at _ = 0 ° and 15°; however, the damping moments remained

either neutrally or slightly stable so that, although the wing was on the verge of wing rock at this angle of

attack, wing rock still did not occur.

At c_ = 30 ° (fig. 23(c)), the rolling moments show a high degree of instability at roll angles of 0° and

15 °. Wing rock did occur at this angle of attack.

At all three angles of attack, the roll damping moment variation was stable at a roll angle of 30 °,

where it was approximately equal to the attached-flow roll damping coefficient; at c_= 20 ° and 30 °, it

became more stable when the roll angle was increased to 45 °. The sketches in figures 23(b) and (c) show

that at least part of this stable damping at the higher roll angles could be related to the movement of the

vortex on the upward-deflected wing panel to points outboard and farther away from the wingtip. At

values of_ less than 30 ° both vortices lie inboard of the wingtip, but at _ = 30 ° the vortex on the upward-

deflected panel is located slightly outboard of the wingtip and continues to move farther outboard and

away from the tip as the roll angle increases. Much of the stable damping could be attributed to this vor-

tex moving outboard of the wingtip to where it had much less of an effect on the wing.

At the same time, the calculated circulations, such as those presented in figure 24, show that the

inboard vortex in these sketches would have a higher circulation (C2 in fig. 24 would be more negative)

when the wing roll angle is positive and increasing. Although the inboard vortex is farther from the wing

than it would be in its static position, it produces a positive rolling moment that acts to restore the roll

angle to zero. These two effects combined the lessening effect of the outboard vortex and the higher

circulation of the inboard vortex_roduce the positive restoring moments that limit the amplitudes of

wing rock oscillations.
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Effect of System Parameters on Oscillation Amplitude and Frequency

The calculated results showed that for wings with a given sweep and cross section shape, the wing

rock oscillations could be defined in terms of two parameters that were functions of wing angle of attack

only. These parameters were the maximum amplitude of the oscillation d_max and the reduced fre-

quency f_]qSb. These parameters were affected by changes in wing sweep and changes in k, the wing

cross section shape parameter (see eq. (40)); also, in wind tunnel tests they were affected by the amount

of friction in the mounting apparatus. But for wings with the same sweep, cross section, and test condi-

tions, the variation with angle of attack would be the same, regardless of the free-stream velocity, the

wing size, or the wing moment of inertia.

Calculated variations of d_max with c_ are presented for comparison with experimental variations for a

delta wing with 80 ° and 75 ° sweep in figures 25(a) and (b), respectively. Figure 25(a) shows wing rock

oscillations for experimental data that represent wings with different thickness and different types of

leading-edge beveling. The experimental data of reference 9 show wing rock starting at an angle of attack

of about 17 °, compared with about 22 ° for the experimental data of reference 4. An abrupt drop-off in

d_max at about c_ = 30 ° can be seen in the data of reference 4, which, according to reference 1, is due to

vortex breakdown. Two calculated variations are also shown: one for the wing of reference 4, for which

it was assumed that k = 0.649 and that no structural damping was present, and the other for the wing of

reference 7, for which it was assumed that k = 0.87 and that there was structural damping in the amount

C/tiicfion = 0.03 present in the tunnel roll apparatus. Overall, the calculated results agree with the experi-

mental data. The calculated results with k = 0.649 generally fall between the experimental data of refer-

ences 4 and 9, which had similar types of leading-edge beveling; the calculated results with k = 0.87

and C/frictio n = 0.03 for the wing of reference 7 are in good agreement with the experimental data of

reference 7.
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Figure 25. Calculated and experimental variations in maximum amplitude of wing rock oscillations with angle of

attack.
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By comparing both calculated and experimental data from figure 25(a) (A = 80 °) with that of fig-

ure 25(b) (A = 75°), one can see that reducing the wing sweep reduced the maximum amplitude of a wing

rock oscillation at a given angle of attack. This reduction in d_max is the result of the fact that, although

wings with different sweeps have the same static CI at a given angle of attack and roll angle (since they

were computed by using eq. (40)), the wing with the lower sweep has a lower value of tan c_/tan 6 at a

given angle of attack. With a lower value of tan c_/tan 6, the vortex circulations and hysteretic displace-

ments are lower at a given roll angle; hence, the driving moments are smaller and the wing rock oscilla-

tion does not reach as high a maximum amplitude.

The effects of angle of attack on wing rock reduced frequencies are shown in figures 26 and 27, where

the calculated results from the present method are presented along with experimental results from refer-

ence 7. The data from reference 7 are the only set available for demonstrating the effects of free-stream

velocity, wing sweep, and wing inertia on wing rock characteristics. In reference 7 reduced frequency is

presented in the form ¢b/U_, which makes it independent of free-stream velocity.

Figure 26 presents calculated and measured values offb/U_ for two wing sweeps and different wing

moments of inertia. Calculated values offb/U_ increased with angle of attack for both wing sweeps. For

the wing swept 80 °, the experimental values of the reduced frequency remained approximately constant

with angle of attack below c_ = 40 ° for the low wing inertias. At angles of attack above 40 °, the experi-

mental values tended to increase and come into closer agreement with the calculated values as the wing

inertia increased. For the wing swept 75 °, the experimental values of reduced frequency increased with c_

and were in good agreement with the calculated values for both wing inertias shown.

As shown in figure 27, the calculated curves for different wing inertias from figure 26 could be

reduced to just two curves for wing sweeps of 80 ° and 75°_y expressing reduced frequency in

the formf_Sb. The reason for this is that, for a spring- and-mass system such as that defined by the

equation of motion for the wing rock model (eq. (47)), the oscillation frequency is primarily determined

by the spring-constant term, that is

(53)

Since, for wings with the same cross section shape, the CI versus _ variation depends only on angle

of attack (see eq. (40)), the reduced frequency f_Sb should depend only on angle of attack and be

independent of wing size and inertia and free-stream dynamic pressure.

The experimental values of f_f6 plotted in figure 27 show that the data for the two lower iner-

tias for the wing swept 80 ° did not collapse into a single curve, and the values were lower than the calcu-

lated values; however, as with the velocity-reduced frequencyJb/U_ (shown in fig. 26), the data did tend

to collapse and the reduced frequencies came into closer agreement with the present calculations as the

inertia was increased. For the higher wing inertias for the wing swept 80 °, and for all inertias for

the wing swept 75 °, the calculated reduced frequencies of the form f_Sb were in generally good

agreement with the experimental values.
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Conclusions

A discrete-vortex method has been developed to model the vortex flow over a delta wing and investi-

gate the wing rock problem associated with these wings. The results indicate the following conclusions:

. Static vortex positions at zero roll angle were in good agreement with experimental results. The

present method gave much better agreement with experimental data than either the Brown and

Michael or Legendre methods, which placed the vortex centers much farther outboard than the

present method.
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For angles of attack below those for which vortex breakdown occurred, calculated vortex circula-

tions were in excellent agreement with those measured by Johari and Moreira in "Direct Measure-

ment of Delta-Wing Vortex Circulation" (AIAA Journal, December 1998, pp. 2195_203) using a

nonintrusive ultrasound technique.

Static vortex center locations at nonzero roll angles were also in good agreement with experimental

data. At angles of attack c_ of 35 ° and 45 °, the wind tunnel results showed vortex centers that were

farther from the wing than those of the calculated results. This difference may have been caused

by the bending away from the wing due to the influence of the flow aft of the wing. At both

c_ = 35 ° and 40 °, the wind tunnel results showed vortex breakdown, indicating some of this bend-

ing had occurred.

The present method was able to model the basic features of wing rock. The rates of buildup of the

oscillations were generally more rapid and the maximum oscillation amplitude and frequencies

were higher than the experiment when the variation of the static rolling moment Cl versus roll

angle _ obtained from the leading-edge suction analogy was used. The oscillations were brought

into very close agreement, however, when an approximation to the variation of the static CI versus

obtained from the wind tunnel results was used.

When the approximate variation of static CI versus _ obtained from wind tunnel results was used in

the calculations, the calculated hysteretic deflections were overall in good agreement with the

experiment, indicating that a strictly kinematic relationship_erived by using the time analogy

and conical-flow assumptions could be used to calculate these deflections.

The present method was able to verify the cause of wing rock and indicated the reason for the

limited amplitude. At roll angles of about 30 °, a lag in vortex position produced a destabilizing

rolling moment increment; above about 30 °, it produced a stabilizing increment. This shift from

destabilizing to stabilizing rolling moments was the result of one vortex moving outboard of the

wingtip and decreasing in strength at wing roll angles above about 30 °.

The calculated results showed that for wings with a given sweep and cross section shape, the

maximum amplitude and the reduced frequency f_-qSb would be functions of wing angle of

attack only. Calculated variations with angle of attack of the maximum amplitude of the wing rock

oscillations generally agreed with the experimental data. Both the experimental and calculated

results showed that reducing the wing sweep reduced the maximum amplitude of the wing rock

oscillation for a given angle of attack.

For wings swept 80 °, experimental values of f_]-qSb were generally lower than the calculated

values for the lower wing inertias, but came into closer agreement with the calculations as the

inertia was increased. For the higher wing inertias, calculated and experimental reduced frequen-

cies were in good agreement for wings swept both 80 ° and 75 °.
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Appendix A

Transformations for Complex Planes Used in Present Analysis

The transformations equations presented in this appendix allow transformation back and forth between

any of the three complex planes, shown in figure A1, that were used in developing the present method.

In the _-plane (fig. Al(a)), the flow at zero roll angle is parallel to the flat plate representing a delta

wing cross section. This plane is used in the Brown and Michael analysis of reference 16, wherein it

serves as the primary complex modeling plane in which the problem was set up before transforming to the

physical plane. It could not be used in this capacity in developing the present method, however, because

it did not give the correct velocities at the vortex centers in the physical plane, as required by the radial-

velocity boundary conditions of the present model. To determine the velocity at a given vortex center, the

effects of that vortex on itself must be neglected. But in the _-plane one vortex also serves as the image

of the other, so that two singularities have to be dealt with at a given center. Setting the velocities at both

singularities to zero gives incorrect values for velocity at the vortex center in the physical plane.

In the present method the _-plane is used primarily to define the vortex locations when the wing is at a

nonzero roll angle. In this plane, lines of constant velocity potential at a zero roll angle correspond to

= Constant lines and so are easily defined. The procedure used to iterate on _ in order to determine

vortex positions for nonzero roll angles is described in the section "Application of Nonzero Roll Bound-

ary Conditions."

The c_-plane (fig. Al(b)) is the basic modeling plane used to generate flow fields in the _- and

)_-planes. In this plane, the vortex flow is represented by pairs of simple logarithmic vortices (see eq. (2))

for which the momentum is known. The images placed inside the cylinder ensure tangent flow at the

surface of the body in all three planes. Since the images are separate from the primary vortices, the

velocities calculated at the primary vortex centers (using eq. (4)) will have the correct values, so that the

radial-flow velocity condition can be applied.

The )_-plane (fig. Al(c)) is the physical plane in which the actual flow about the wing cross section is

represented, and is the one in which all boundary conditions must be satisfied.

Points in one of these complex planes can be transformed into points in any of the others by using one

of the following transformations:

_. =o____=o+___=.4_74o4oaa2+12 _"= "4_2 -lo=o=_-+_._+W/_2 + a2"4_-222-a 2 t

(A1)
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Appendix B

Description of Forces Acting on Delta Wing

The description of delta wing forces in this appendix is intended to clear up some of the confusion

existing in the literature about the nature of these forces, particularly about the force on the feeding sheet

considered in previous discrete-vortex models such as those of references 13, 14, 16, and 17.

According to the present model, three forces act on the delta wing: one steady and two

unsteady. These forces can be computed by performing Blasius integrations (see refs. 19 and 20) around

a closed path that encloses only the wing in the physical )_-plane. Steady forces are computed using the
formula:

P (dw/2
Fx-iF Y =i_ ° _ d)_ ) d)_

(B1)

Unsteady forces are computed by using the time-dependent formula:

@unsteady -- 1f Yunsteady = --l p
(B2)

In these equations, W is the complex potential for the flow (see eq. (2)), and can be written in terms of

coordinates in the )_-plane as

W(a,F,_ka)=aU_sinc_(_2_+lcosqb+i_sinqb

+ +1 - -ln (B3)

The unsteady forces arise from the fact that this complex potential is a function of time because the

wing semispan a and the vortex circulation Fk vary with time. That is, both quantities vary with distance

along the three-dimensional delta wing and, therefore, according to the time analogy, vary with time in an

equivalent two-dimensional time-dependent plane. The vortex center coordinate )_k also varies with dis-

tance or time, but appears in the complex potential only in its nondimensional form )_k/a, which is inde-

pendent of time. That is, for a given wing at a given angle of attack and roll angle, )@a is the same for

each primary vortex at each wing cross section and is therefore independent of both distance along the

wing and of time.

The three forces that can be obtained using the steady and unsteady Blasius formulas are discussed in

the following sections.

Static Pressure Force

The static pressure force is obtained by considering all quantities in equation (B3) to be constant and

independent of time, and therefore it is considered a steady force that can be determined by using equa-

tion (B1). In deriving this force, the primary vortices are assumed to have fixed positions and to have
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fixedcirculations;thisforcethenrepresentsthestaticpressureforcethatthevortexsystemexertsonthe
wingasaresultof its inducinghighvelocitiesandthereforehighpressuresonthewing. Thisforcecan
bewrittenincoefficientformas

i _C 1 dW d sin 2 c_C x - iCy = _ U_ sin c_ d?_
0

(B4)

The opposite of this force is the force that the wing exerts on the vortex system, and it is this static

pressure force on the vortex system that causes the primary vortices to change their positions and hence

their momentum, as expressed by the boundary conditions S-2 and AS-6.

Attached-Flow Force

The attached-flow force is obtained by holding Fk and )_k constant when taking the time derivative in

equation (B3) while allowing the local wing semispan a to vary with time. This is the basic force that the

wing would develop if the flow were attached and there were no vortex formation. Although the

attached-flow force is usually considered to be a steady force, there would be no such force in potential

flow if the wing cross section were not expanding. In the context of the present model, it is the force that

results strictly from the fact that the wing cross section expands with distance along the delta wing or with

time in an equivalent two-dimensional flow.

The integral involved in obtaining the attached-flow force can be written in terms of the wing semi-

apex angle and angle of attack using the time analogy. The derivative with respect to time in equa-

tion (B2) can be written as

0 d dadl a d d
- - --U_ cos c_-- = tang U_ cos c_ -- (B5)

Ot da dl dt 1 da da

With the time derivative written this way, the attached-flow force, in coefficient form, becomes

CFattache d = 2i + 1 cos qb+ i a sin qb) d\ a } tan c_ c_
O

(B6)

where the integration is to be carried out around any path enclosing the wing.

It can be shown that the lift coefficient computed for the wing by using equation (B6) is

CFdttached acA .
- -- - sm c_ (B7)

CLattached COSC_ 2

which, when the small-angle approximation for sin c_ is made, becomes the formula derived by Jones for

slender delta wings in reference 33.

Force Caused by Changes in Vortex Circulation

This force is obtained by holding the wing semispan a constant and allowing F to vary in equa-

tion (B2). It is the force that arises from the increases in F that take place as the primary vortices grow
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with timein thetwo-dimensionaltime-dependentplane,orwith distancealongthethree-dimensional
deltawing.Thisforceis thesameasthatonthestraight-linefeedingsheetthatservesasabranchcutin
theBrownandMichael(ref.16)andsimilarmodels.Thatis,thesepreviousmodelsassumeaforceon
thebranchcutof

(B8)

This force then is equal to the unsteady pressure p OF/dt times the length of the branch cut.

It should be noted, however, that the branch cut for which this force is calculated cannot be taken

arbitrarily; more specifically, it cannot be taken to lie between the primary vortex and a separation point

at the wingtip as assumed in the Brown and Michael model. The logarithmic functions in equation (B3)

have branch points Zo and at the image point ro2/Oo, thus the branch cut needed to make them single-

valued should lie between these two points. In the o-plane, this cut is along the straight radial line

between the primary vortex and its image; in the )_-plane, it becomes a curved line extending from the

wing to the vortex center, as shown in figure 2(b). To calculate the force using equation (B3), the inte-

gration must be carried out around a cut that connects the vortex and image branch points. An integration

carried out around a path enclosing only the feeding sheet of the Brown and Michael model will give zero

force, rather than the force given by equation (B8).

Although the force given by equation (B8) is to be interpreted mathematically as a pressure acting

over a certain length in the flow, it can be given no such physical interpretation in the real flow. It is

strictly the unsteady pressure force that results from changes in the strength of the vortex system. There

is no physically visible feeding sheet in the real flow along which unsteady pressures act.

As discussed in the main text in the section "Discussion of the Symmetric Boundary Conditions:

X-Axis Momentum Condition," this force is neglected in considering the force-momentum balance on the

vortex system because the unsteady force caused by changes in vortex circulation strength is exactly

equal to the rate of change of momentum caused by changes in vortex circulation, regardless of the loca-

tion of the vortex center. No new information is obtained by equating this unsteady force to the rate of

change of momentum caused by changes in circulation; therefore, this force does not play a roll in deter-

mining vortex position and strength.

Total Delta Wing Force

Because secondary and tertiary vortices are not included in the present model, adding the steady and

unsteady forces described previously will not give the correct value for the total force on the wing. The

total normal force for a delta wing, however, can be closely approximated by using the Polhamus leading-

edge-suction analogy (ref. 23), which gives a normal force coefficient due to the vortices (for the general

case with the wing at a nonzero roll angle) of

CN = _ sin 2 c_ cos 2 qb (B9)
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Appendix C

Derivation of Equation for Vortex Hysteretic Deflections Caused by Wing

Rolling Motion

The vortices in the wake of a delta wing do not respond instantaneously to wing motion and therefore

are subject to hysteretic deflections as the wing rotates about its longitudinal axis. The available experi-

mental data show very little, if any, hysteretic deflection in the lateral direction (the data of ref. 4, for

example, show y-positions of the vortices to be approximately the same as the static positions at any time

during a rolling oscillation). The deflections in the x-direction (normal to the wing), however, can be

substantial. The model in the present method makes use of the two-dimensional time analogy and also

assumes that the primary vortices deflect in a conical manner as the wing rotates, as shown in figure C1.

In figure C1, the line of vortex centers is assumed to deflect as a straight line, with the deflection &r at

any station being proportional to the distance from the wing apex, as required if the flow is to remain
conical.

Line of static

%i):_.t%Oxpositions _% _f d--,vtl_ailll_ _ "_ __

Figure C1. Hysteretic deflection of vortex.

According to the two-dimensional time analogy, the flow over a delta wing is analogous to that for a

two-dimensional plate whose span and the flow around it are changing with time. In the two-dimensional

flow field, the vortices are increasing in strength and moving radially outward from the center line of the

plate with time. If the plate is rotating, each vortex will also be moving either toward it or away from it at

a velocity of yk d) and will deflect toward or away from the plate through a distance of

Multiplying and dividing the right-hand side of equation (C l) by a U_ sin a gives

£Ax k _ Yk _) Uoc sin ot a dt (C2)
a U_ sin_x

If the flow is conical, the ratio y_a in equation (C2) will be a constant, since the vortex positions are

changing in proportion to changes in the semispan; the variable a by itself, of course, will vary linearly
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with time. According to the time analogy, time is related to chordwise distance along the three-

dimensional wing by

dl
dt = -- (c3)

N o cos c_

For the delta wing, local semispan is related to chordwise distance by

a = 1 tan 6 (C4)

Making these substitutions into equation (C2) and carrying out the integration over the length of the root

chord of the three-dimensional wing gives the hysteretic deflection at the wing trailing edge:

Yk _ tanc_ fLltangdl Yk _ L2
(Z_Ck)te - - tan c_--tan 6 (C5)

a U_ sin c_ Jo a U_ sin c_ 2

For the delta wing, L = b/2 tan 8, so that equation (C1) can be written as

(AXk)te = __ ( __b /( tanc_ /b
2U_ sinc_ ]\2tan6 ] 2

(C6)

The deflection at the base, nondimensionalized in terms of the wing semispan at the base, then becomes

(AXk)te_Yk( __b_ /(tanc_ /

b/2 a 12U_sina ]k2tan6]
(C7)

Because the flow is assumed to be conical, both the hysteretic deflection &r and the wing semispan a vary

linearly with chordwise distance L With this type of variation, the ratio of hysteretic deflection to wing

semispan will be constant along the wing, so that at any cross section this ratio is equal to the ratio at the

trailing edge. Equation (C7), therefore, gives the nondimensional hysteretic deflection at any cross
section as

AXk_(AXk)te_Y k qbb /( tanc_ /

a 1)/2 a 2U_sina]k2tan6]
(C8)

Equation (C8) shows the hysteretic deflection to be equal to the product of (1) the nondimensional

lateral coordinate of the vortex center, (2) the nondimensional rolling velocity of the wing, and (3) a

nondimensional time, which is constant for the wing and can be expressed in terms of the quantity
tan c_/tan 8.
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Appendix D

Wing Rolling Moment Calculations

As stated in the main text, calculating the wing rolling moments was a problem in developing the

present method because of the simplifying assumptions made. The model neglects the secondary and

tertiary vortices and does not apply a Kutta condition at the wing leading edges; therefore, the velocities

and pressures at the leading edges are infinite. Under these conditions, Blasius integrations around the

wing do not give the correct moments, presenting a problem in calculating both the static wing rolling

moments and the rolling moments produced on the wing by hysteretic deflections of the primary vortices.

For the static rolling moments, this problem was solved by assuming that these moments could be closely

approximated as being those for the wing with attached flow. For the hysteretic moments, it was resolved

by integrating around the primary vortices instead of the wing to obtain the moments, and then reducing

these by a constant factor to obtain the wing moments. The equations for the static and hysteretic

moments are discussed in the following sections.

Calculation of Static Wing Rolling Moments

These static moments were determined by integrating around the wing cross section with an assumed

attached flow. This integration was done by using the Blasius formula for moments (see ref. 19 or 20),
which in coefficient form can be written as

-6 o a U_n c_ d;_] d sin 20_
(D1)

The complex potential W0_) used in this equation was that for the free-stream flow about the wing with

no vortex flow (that is, eq. (2) with C1 and C2 set to zero). The integration was carried out around a path

that enclosed the complete wing cross section.

The moment coefficients obtained from equation (D1) can be written in closed form for a wing at roll

and/or sideslip as follows:

For a rolled wing with zero sideslip,

C1 = _ rt sin2 ct sin qbcos qb
3

(D2)

For a sideslipped wing with zero roll,

C 1 = --- sin (_ sin _ cos
3

(D3)

For a wing that is both rolled and sideslipped,

C 1 = -_[sin o_(cos 2 qb- sin 2 qb)sin _ cos _ + (sin c_2 cos 2 _ - sin 2 _)sin qbcos qb]
3L

(D4)
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Values of rolling moment coefficients calculated by using these relationships are presented with

experimental results in figures D1 through D3. Figures D1 and D2 show the variations with angle of

attack for different roll and sideslip angles, respectively; figure D3 shows the variations with sideslip and

roll angle at angles of attack of 10 ° and 20 °. These figures show that the analytical values are in generally

good agreement with experimental data for angles of attack below the stall.

Calculation of Hysteretic Rolling Moments

Because the attached-flow rolling moments used to approximate the static wing rolling moments in

equations (D2) (D4) were functions of wing angle of attack, roll angle, and sideslip angle alone and not

vortex position they could not be used to determine the hysteretic rolling moments when the wing was

oscillating. These hysteretic moments had to be determined by Blasius integrations made with the

primary vortices included in the flow field.

With vortices included, it was found that the rolling moments calculated by Blasius integrations

around only the wing would not limit the amplitude of the wing rock oscillations. This failure to limit the

amplitude was believed to be the result of the infinite pressures acting at the wing leading edges in the

present model. These infinite pressures give a distorted pressure distribution on the wing so that moments

cannot be computed accurately.

To work around this problem, the rolling moments used in the calculations were those obtained by

integrating around only the primary vortices. The moments obtained this way are the result of finite

forces that act at the centers of the primary vortices to produce a moment about the wing moment center.

It was believed, therefore, that incremental changes in the magnitudes and positions of these forces

caused by hysteresis would produce incremental moments that were an accurate indication of those

affecting the wing.

As indicated previously, the incremental moments due to hysteresis were obtained by using the

Blasius equation (D1), and for wOQ, using the full complex potential for the flow with vortices (eq. (2) of

the text with C1 and C2 not equal to zero). The integrations were carried out around a path that included

only the two primary vortices. To determine the hysteretic moments, two Blasius integrations were made:

one with the primary vortices in their static positions xk,Yk at a given wing roll angle; the second with

them in their displaced positions Xk + Axk,Yk at a given roll angle and roll rate. The incremental moment

due to hysteresis was then the difference between these two values:

Clh = C1 xk+_rk,Yk - C1 xk'Yk (D5)

As shown in figure D4, the rolling moments obtained by integrating around the primary vortices were

substantially more negative than those obtained by integrating around the wing only and, therefore, had to

be reduced to obtain the moment increment that would actually be felt by the wing. This reduction was

accomplished by multiplying the computed moment increment by reduction factor Y, which was obtained

from plots of wing-integration moment versus vortex-integration moment such as that shown in fig-

ure D5. The plot shown is for a wing swept 80 ° (8 = 10 °) at an angle of attack of 30 ° (tan c_/tan _ = 3.27).

Figure D5 shows that the wing-integration moments vary approximately linearly with the vortex-

integration moments at the lower roll angles; this linear relationship breaks down only for absolute values

of _ greater than about 30 °. The slope of the linear fit to the data between roll angles of 30 ° and +30 °

was therefore taken to be the value of Y that the vortex-integration moments were multiplied by to get the

hysteretic wing rolling moments.
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Valuesof 7weredeterminedoverarangeof tanc_/tan8,asshownin figureD6. A cubicfit to these
data(eq.(41))wasusedto specifythereductionfactorfor agivenwingatagivenangleof attackin the
wingrockcalculations.
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Table 1. Computed Vortex Positions as Function of Wing Roll Angle

for Different Angles of Attack

(a) a = 10 °

d?, deg x 1 Yl x2 Y2

-52.5

-45.0

-37.5

-30.0

-22.5

-15.0

-7.5

0

7.5

15.0

22.5

30.0

37.5

45.0

52.5

0.2804

0.3585

0.4289

0.4532

0.4262

0.3767

0.3272

0.2975

0.2537

0.2284

0.2026

0.1819

0.1538

0.1274

0.1073

1.1781

1.1027

1.0125

0.9065

0.8063

0.7294

0.6764

0.6843

0.6170

0.6027

0.6036

0.6394

0.7258

0.8331

0.9208

0.1073

0.1274

0.1538

0.1819

0.2026

0.2284

0.2537

0.2975

0.3272

0.3767

0.4262

0.4532

0.4289

0.3585

0.2804

-0.9208

-0.8331

-0.7258

-0.6394

-0.6036

-0.6027

-0.6170

-0.6843

-0.6764

-0.7294

-0.8063

-0.9065

-1.0125

-1.1027

-1.1781

(b) a = 15 °

_,deg x 1 Yl x2 Y2

-52.5

-45.0

-37.5

-30.0

-22.5

-15.0

-7.5

0

7.5

15.0

22.5

30.0

37.5

45.0

52.5

0.3897

0.4981

0.5832

0.5844

0.5334

0.4682

0.4083

0.3608

0.3259

0.3008

0.2805

0.2571

0.2220

0.1800

0.1487

1.3201

1.2310

1.1191

0.9804

0.8559

0.7622

0.6960

0.6480

0.6093

0.5745

0.5462

0.5449

0.6147

0.7591

0.8845

0.1487

0.1800

0.2220

0.2571

0.2805

0.3008

0.3259

0.3608

0.4083

0.4682

0.5334

0.5844

0.5832

0.4981

0.3897

-0.8845

-0.7591

-0.6147

-0.5449

-0.5462

-0.5745

-0.6093

-0.6480

-0.6960

-0.7622

-0.8559

-0.9804

-1.1191

-1.2310

-1.3201
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Table 1. Continued

(c) c_ = 20 °

_, deg x 1 Yl x2 Y2

-45.0

-37.5

-30.0

-22.5

-15.0

-7.5

0

7.5

15.0

22.5

30.0

37.5

45.0

0.6845

0.7306

0.6805

0.6021

0.5215

0.4525

-1.3655

-1.1962

-1.0135

-0.8674

-0.7612

-0.6863

0.2358

0.2896

0.3148

0.3275

0.3413

0.3641

-0.5673

-0.4154

-0.4200

-0.4730

-0.5301

-0.5812

0.4002

0.3641

0.3413

0.3275

0.3148

0.2896

0.2358

0.6303

0.5812

0.5301

0.4730

0.4200

0.4154

0.5673

0.4002

0.4525

0.5215

0.6021

0.6805

0.7306

0.6845

-0.6303

-0.6863

-0.7612

-0.8674

-1.0135

-1.1962

-1.3655

(d) R = 23 °

_, deg x 1 Yl x2 Y2

-52.5

-45.0

-37.5

-30.0

-22.5

-15.0

-7.5

0

7.5

15.0

22.5

30.0

37.5

45.0

52.5

0.6009

0.7913

0.7683

0.7193

0.6331

0.5482

0.4767

0.4230

0.3867

0.3651

0.3545

0.3480

0.3320

0.2848

0.2052

1.2532

1.4581

1.2370

1.0364

0.8813

0.7692

0.6897

0.6292

0.5753

0.5172

0.4483

0.3723

0.3220

0.4061

0.7316

0.2052

0.2848

0.3320

0.3480

0.3545

0.3651

0.3867

0.4230

0.4767

0.5482

0.6331

0.7193

0.7863

0.7913

0.6009

-0.7316

-0.4061

-0.3220

-0.3723

-0.4483

-0.5172

-0.5753

-0.6292

-0.6897

-0.7692

-0.8813

-1.0364

-1.2370

-1.4581

-1.2532
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Table 1. Continued

(e) c_ = 25 °

dp, deg x 1 Yl x2 Y2

-52.5

-45.0

-37.5

-30.0

-22.5

-15.0

-7.5

0

7.5

15.0

22.5

30.0

37.5

45.0

52.5

0.6699

0.8451

0.8150

0.7412

0.6512

0.5642

0.4914

0.4370

0.4006

0.3799

0.3714

0.3690

0.3595

0.3208

0.2260

1.6241

1.5085

1.2601

1.0506

0.8903

0.7747

0.6923

0.6292

0.5723

0.5101

0.4344

0.3451

0.2684

0.2951

0.6638

0.2260

0.3208

0.3595

0.3690

0.3714

0.3799

0.4006

0.4370

0.4914

0.5642

0.6512

0.7412

0.8150

0.8451

0.6699

-0.6638

-0.2951

-0.2684

-0.3451

-0.4344

-0.5101

-0.5723

-0.6292

-0.6923

-0.7747

-0.8903

-1.0506

-1.2601

-1.5085

-1.6241

(D a = 27 °

_,deg x 1 Yl x2 Y2

-52.5

-45.0

-37.5

-30.0

-22.5

-15.0

-7.5

0

7.5

15.0

22.5

30.0

37.5

45.0

52.5

0.7651

0.8815

0.8389

0.7608

0.6679

0.5791

0.5053

0.4504

0.4140

0.3941

0.3876

0.3892

0.3862

0.3552

0.2571

1.7346

1.5460

1.2808

1.0641

0.8992

0.7803

0.6953

0.6298

0.5700

0.5041

0.4222

0.3211

0.2215

0.2014

0.5446

0.2571

0.3552

0.3862

0.3892

0.3876

0.3941

0.4140

0.4504

0.5053

0.5791

0.6679

0.7608

0.8389

0.8815

0.7651

-0.5446

-0.2014

-0.2215

-0.3211

-0.4222

-0.5041

-0.5700

-0.6298

-0.6953

-0.7803

-0.8992

-1.0641

-1.2808

-1.5460

-1.7346
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Table 1. Concluded

(g) _t = 30 °

_,deg x 1 yl x2 y2

-525

-45.0

-37.5

-30.0

-22.5

-15.0

-7.5

0

7.5

15.0

22.5

30.0

37.5

45.0

52.5

0.9161

0.9164

0.8688

0.7873

0.6907

0.5996

0.5245

0.4690

0.4328

0.4140

0.4105

0.4185

0.4247

0.4021

0.3327

1.9155

1.5864

1.3081

1.0830

0.9118

0.7884

0.6997

0.6307

0.5672

0.4963

0.4060

0.2887

0.1606

0.0925

0.2283

0.3327

0.4021

0.4247

0.4185

0.4105

0.4140

0.4328

0.4690

0.5245

0.5996

0.6907

0.7873

0.8688

0.9164

0.9161

-0.2283

-0.0925

-0.1606

-0.2887

-0.4060

-0.4963

-0.5672

-0.6307

-0.6997

-0.7884

-0.9118

-1.0830

-1.3081

-1.5864

-1.9155

(h) a = 40 °

_,deg x 1 Yl x2 Y2

-52.5

-45.0

-37.5

-30.0

-22.5

-15.0

-7.5

0

7.5

15.0

22.5

30.0

37.5

45.0

52.5

0.9932

0.9831

0.9468

0.8629

0.7574

0.6610

0.5834

0.5269

0.4915

0.4766

0.4831

0.5127

0.5469

0.5384

0.4799

2.0498

1.6812

1.3884

1.1428

0.9536

0.8172

0.7175

0.6381

0.5636

0.4787

0.3659

0.2057

0.0152

-0.1248

-0.1583

0.4799

0.5384

O.5469

0.5127

0.4831

0.4766

0.4915

0.5269

0.5834

0.6610

0.7574

0.8629

0.9468

0.9831

0.9932

0.1583

0.1248

-0.0152

-0.2057

-0.3659

-0.4787

-0.5636

-0.6381

-0.7175

-0.8172

-0.9536

-1.1428

-1.3884

-1.6812

-2.0498
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Table2.NondimensionalVortexStrengths
forSelectedValuesoftanc_/tan6

tanc_/tan6 Ck

0

0.25

0.50

0.75

1.00

1.50

2.00

3.00

3.30

4.00

5.00

0

0.3366

0.4885

0.5687

0.6076

0.6558

0.6901

0.7415

0.7534

0.7818

0.8159
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